(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(node(s(n), cons(node(s(n181_0), ys68_0), xs4_0))) →+ f(node(n, cons(node(n181_0, cons(node(n, cons(node(s(n181_0), ys68_0), xs4_0)), ys68_0)), cons(node(s(n181_0), ys68_0), xs4_0))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [n / s(n), n181_0 / s(n181_0)].
The result substitution is [ys68_0 / cons(node(n, cons(node(s(n181_0), ys68_0), xs4_0)), ys68_0), xs4_0 / cons(node(s(n181_0), ys68_0), xs4_0)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))
Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
selectThey will be analysed ascendingly in the following order:
select < f
(8) Obligation:
TRS:
Rules:
f(
node(
s(
n),
xs)) →
f(
addchild(
select(
xs),
node(
n,
xs)))
select(
cons(
ap,
xs)) →
apselect(
cons(
ap,
xs)) →
select(
xs)
addchild(
node(
y,
ys),
node(
n,
xs)) →
node(
y,
cons(
node(
n,
xs),
ys))
Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons
Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))
The following defined symbols remain to be analysed:
select, f
They will be analysed ascendingly in the following order:
select < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
select(
gen_cons6_0(
+(
1,
n8_0))) →
*7_0, rt ∈ Ω(n8
0)
Induction Base:
select(gen_cons6_0(+(1, 0)))
Induction Step:
select(gen_cons6_0(+(1, +(n8_0, 1)))) →RΩ(1)
select(gen_cons6_0(+(1, n8_0))) →IH
*7_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
node(
s(
n),
xs)) →
f(
addchild(
select(
xs),
node(
n,
xs)))
select(
cons(
ap,
xs)) →
apselect(
cons(
ap,
xs)) →
select(
xs)
addchild(
node(
y,
ys),
node(
n,
xs)) →
node(
y,
cons(
node(
n,
xs),
ys))
Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons
Lemmas:
select(gen_cons6_0(+(1, n8_0))) → *7_0, rt ∈ Ω(n80)
Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
node(
s(
n),
xs)) →
f(
addchild(
select(
xs),
node(
n,
xs)))
select(
cons(
ap,
xs)) →
apselect(
cons(
ap,
xs)) →
select(
xs)
addchild(
node(
y,
ys),
node(
n,
xs)) →
node(
y,
cons(
node(
n,
xs),
ys))
Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons
Lemmas:
select(gen_cons6_0(+(1, n8_0))) → *7_0, rt ∈ Ω(n80)
Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
select(gen_cons6_0(+(1, n8_0))) → *7_0, rt ∈ Ω(n80)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
node(
s(
n),
xs)) →
f(
addchild(
select(
xs),
node(
n,
xs)))
select(
cons(
ap,
xs)) →
apselect(
cons(
ap,
xs)) →
select(
xs)
addchild(
node(
y,
ys),
node(
n,
xs)) →
node(
y,
cons(
node(
n,
xs),
ys))
Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons
Lemmas:
select(gen_cons6_0(+(1, n8_0))) → *7_0, rt ∈ Ω(n80)
Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
select(gen_cons6_0(+(1, n8_0))) → *7_0, rt ∈ Ω(n80)
(18) BOUNDS(n^1, INF)